	Comprehensive In Vitro Pro-Arrhythmia Analysis Using
✤ Course Title	Human Pluripotent Stem Cells-Derived Cardiomyocytes and
	Multielectrode Array System
About this course	From Golgooni et al paper: "Cardiotoxicity is one of the major
	reasons for drug attrition from market which may impose
	tremendous costs to pharmaceutical companies ¹ . Drugs may
	impose side effects on structure or electrophysiology of cardiac
	myocytes. Comprehensive <i>in vitro</i> proarrhythmia assay (CiPA)
	using the hPSC-CM/MEA system have been proposed as a
	robust, efficient, and sensitive platform for electrophysiological
	cardiotoxicity screenings ²⁻¹³ . While industry standard assays are
	based on using immortalized cell lines or animal models, CiPA
	takes the advantage of cardiomyocytes obtained from
	cardiogenic differentiation of hPSC, literally representing the
	most similar physiology to human heart ¹⁴ . Therefore, this high
	throughput physiologically relevant platform for cardiotoxicity ⁶
	may provide an advanced complementary method with great
	potential for reducing the costs of drug development and
	cardiotoxicity-related drug attrition." ¹⁵
Audience:	
Level (BSc. MSc., PhD, etc.	Undergrad and graduate students of all branches of Biology,Medicine, and Pharmacology
Lever (bSc. MSc., Fild, etc.	
 Department 	Stem Cells and Developmental Biology
✤ Instructor	Sara Pahlavan
Modules/Resources	S7B Nonclinical Evaluation of the Potential for Delayed
• 1910uule5/11050ulle5	Ventricular Repolarization (QT Interval Prolongation) by
	Human Pharmaceuticals
 Course Requirements 	A minimum knowledge of drug development, membrane physiology, stem cells and their differentiation into
 Course Requirements 	cardiomyocytes
 Registration Costs 	250 \$
Duration:	1 full day